

Risk, Insurance and Wages in General Equilibrium by Mobarak and Rosenzweig (2014)

Girija Bahety and Marina M. Ngoma October, 16 2018

1/48

EC 721 BU

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Conclusion
00000					

Outline

2 Literature review

3 Model

- 4 Research Design
- 5 Data

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Conclusion
00000					

Background

- Absence of formal insurance markets where needed
 - $\bullet~75\%$ of the world's poor engaged in agriculture
 - 90% of variation in Indian agriculture production caused by variation in rainfall

EC 721 BU

- 90% of Indians are not covered by formal insurance
- Literature concludes towards providing insurance to farmers
- Policy issues
 - Ignore spillover effects on uninsured labor (poor)
 - India: agriculture insurance explicitly targeted to those with "insurable interest".

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Conclusion
00000					

Research Question

What is the impact of rainfall insurance on labor market outcomes in agricultural markets?

4/48

EC 721 BU

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Conclusion
00000					

Research Approach

- Design a labor market GE model
 - Labor demand, labor supply and GE wages.
 - Three policy scenarios: a) only cultivators are offered insurance, b) both cultivators and laborers are targeted and c) only laborers are targeted with insurance.
- Conduct a Randomized Control Trial (RCT):
 - Randomly market rainfall insurance to approx 4,800 cultivators and landless laborers across three states in India.

EC 721 BU

- Index-insurance based on monsoon onset date.
- Estimate the G.E. model and policy scenarios.

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Conclusion
00000					

Key Findings

Insurance contracts should be offered to **BOTH** cultivators and landless laborers.

- If offered only to cultivators
 - Labor demand and equilibrium wages become more rainfall sensitive.
 - Laborers are worse off because of high wage volatility.
- If offered to laborers as well
 - Wages are smoothed across rainfall states by reducing labor supply during droughts when payouts are paid.

イロン 不得 とくほ とくほ とうほう

EC 721 BU

Risk, Insurance and Wages in General Equilibrium by Mobarak and Rosenzweig (2014)

Motivation	Literature review	Model	Research Design	Data	Conclusion
	0				

Outline

Motivation

3 Model

5 Data

G. Bahety and M.M.Ngoma

Risk, Insurance and Wages in General Equilibrium by Mobarak and Rosenzweig (2014)

EC 721 BU

Motivation	Literature review	Model	Research Design	Data	Conclusion
	00				

Literature

- Providing insurance leads formerly uninsured farmers to switch from **low to high yield** but **riskier** crop varieties.
 - Cole et al. (2013); Mobarak and Rosenzweig (2014)
- Insurance increases ag output but makes it more rainfall-sensitive
 - Karlan et al (2014); Mobarak and Rosenzweig (2013)
- Emphasis on GE effects rather than effect on the treated.
 - Previous approaches ignore spillover effects on the poor.
 - Cultivators may Δ labor demand therefore \uparrow wage volatility.
 - Jayachandran (2006): non-experimental study of GE effects of credit market imperfections on wages.

EC 721 BU

• Effects of insurance marketed through RCTs

Motivation	Literature review	Model	Research Design	Data	Conclusion
		•0000000000000000			

Outline

Motivation

2 Literature review

3 Model

4 Research Design

5 Data

G. Bahety and M.M.Ngoma

Model Setting and Assumptions

- Two groups: cultivators and landless laborers
 - Cultivators own land and are net employers. No labor supply. Few exceptions (robust results)
 - Landless laborers: no lease in, no cultivation.
- One period/season model
 - Abstract from credit constraint (perfect credit market).
 - Empirical work allows for credit constraints (Jayachandran, 2006).

10/48

EC 721 BU

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Conclusion
		000000000000000000000000000000000000000			

Labor supply

- Landless hh endowed w/ m non-earning inc. and 1 unit of t.
- U function is CD in leisure h and consumption $c : U = h^{\gamma} c^{(1-\gamma)}$
- Rainfall θ^j can be low (L) or high (H). L-state occurs w/ prob. q.
- Two groups of laborers: offered (not) insurance.
- Insurance unit price p and pay out in L state is I.

11/48

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Motivation	Literature review	Model	Research Design	Data	Results	Conclusion
00000	00	000●000000000000000000000000000000000	000	000	000000000000000000000000000000000000	00

12/48

EC 721 BU

• They supply
$$(1 - h)$$
 labor at wage w .
BC are:
 $c^{L} = w^{L}(1 - h) + m - pl + l$
 $c^{H} = w^{H}(1 - h) + m - pl$

• E(U) maximization pgm:

$$Max_{I,h}E(U) = qU^{L} + (1-q)U^{H}$$
 yields FOC:
 $q(1-p)U_{c}^{L} = p(1-q)U_{c}^{H}$
Labor supply: $l_{c}^{j} = 1 - \gamma - \gamma \frac{y^{j}}{w^{j}}$ where
where $y^{j} = m - pl + l$ if $j = L$ and $m - pl$ if $j = H$

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Conclusion
		000000000000000000000000000000000000000			

Labor supply (cntd)

Proposition 1

a. In the low state, the labor supply of the insured will be lower than that of the uninsured laborer.

b. In the high state, the labor supply of the insured will be higher than that of the uninsured laborer.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 のへで

13/48

EC 721 BU

Motivation	Literature review	Model	Research Design	Data	Conclusion
		000000000000000000000000000000000000000			

Labor supply (cntd)

Proof

Table 1

Insured and Uninsured Landless Labor Supply in the H and L States						
State of nature	L	Н				
Insured labor supply	$1 - \gamma - \frac{\gamma(m + (1 - p)I)}{w^L}$	$1 - \gamma - \frac{\gamma(m-pl)}{w^H}$				
Uninsured labor supply	$1 - \gamma - \frac{\gamma(m)}{w^L}$	$1 - \gamma - rac{\gamma(m)}{w^H}$				
Difference insured and uninsured	$\frac{-\gamma(1-p)l}{w^L}$	$\frac{\gamma pI}{w^H}$				

14/48

EC 721 BU

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Conclusion
		000000000000000000000000000000000000000			

Labor supply (cntd)

Compared to no insurance world, insurance effects:

- In L, labor supply \downarrow because $m \uparrow$ and leisure is a normal good
- In *H*, labor supply \uparrow because no payout and leisure is a normal good.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 のへで

15/48

EC 721 BU

Motivation	Literature review	Model	Research Design	Data	Conclusion
		000000000000000000000000000000000000000			

Labor demand

- Cultivators endowed w/ 1 unit of land and m non-earnings income.
- Production in two stages using CD technology with two inputs: *I* labor and x capital (seeds, fertilizer).
- **Stage 1** (Planting stage): Cultivators decide on input *x* and whether to buy insurance. Ignore the use of labor.
- Stage 2 (Harvest stage): State of nature θ^j is realized, labor hired, profit maximized.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

16/48

EC 721 BU

• Can save (s) at rate r, and borrow (b) within agriculture cycle.

Motivation	Literature review	Model	Research Design	Data	Conclusion
		000000000000000000000000000000000000000			

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

17/48

EC 721 BU

Labor demand (cntd)

- Stage-2 program: $Max \ \pi = \theta^{j} I^{\beta} x^{(1-\beta)} - w^{j} I$, where I is hired labor.
- Labor demand: $I = x \left(\frac{\beta \theta^j}{w^j}\right)^{\frac{1}{1-\beta}}$
- Stage-1 program: $Max_{x,I}E(U) = U(c_1) + b[qU(c_2^L) + (1-q)U(c_2^H)]$ $c_1 = m - x - s - pI$ $c_2^I = rs + \theta^J I^{\beta} x^{(1-\beta)} - w^J I + i^L I$ where i^L is an indicator for low state, when insurance payout occurs.

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Conclusion
		000000000000000000000000000000000000000			

Labor demand (cntd)

- In the absence of insurance, x < x* due to risk.
- Amount of stage-1 x increases as cost of insurance falls.

Why?

- Purchasing insurance \downarrow cultivator's MU in L
- Increasing $x \downarrow MU$ in H
- Given stage-2, the effect on I^d from $\Delta \Theta^j$ is stronger the lower the cost of insurance.

18/48

EC 721 BU

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Conclusion
		000000000000000000000000000000000000000			

Labor market equilibrium

• Equilibrium condition for N landless households supplying labor and M cultivators demanding labor: $[1 - \gamma - \gamma \frac{y^j}{w^j}]N = [x(\frac{\beta\theta^j}{w^j})^{\frac{1}{1-\beta}}]M$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

19/48

EC 721 BU

Motivation	Literature review	Model	Research Design	Data	Conclusion
		000000000000000000000000000000000000000			

Policy simulations

Proposition 2

Offering insurance to landless laborers dampens wage volatility Δw .

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

20/48

EC 721 BU

• Proof:
$$\uparrow y \Rightarrow \uparrow w$$

• $\frac{dw}{dy} = \frac{\gamma(\beta-1)w}{\gamma y(\beta-1) - lw(\frac{M}{N})} > 0$

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Conclusion
		000000000000000000000000000000000000000			

Policy simulations (cntd)

- In *L* state, $I_i^s < I_u^s$. This $\Rightarrow w^L$ increases compared to no insurance word.
- In *H* state, $l_i^s > l_u^s$. This $\Rightarrow w^L$ falls compared to no insurance word.
- Therefore, G.E of insurance to landless hh reduces wage risk.
- Income is smoothed if some landless hh purchase insurance.
- By symmetry, welfare of risk-averse cultivators \downarrow in the *L* state.

 Motivation
 Literature review
 Model
 Research Design
 Data
 Results
 Conclusion

 00000
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Policy simulations (cntd)

Proposition 3

Offering insurance to cultivators increases wage volatility (Δw) .

イロン イロン イヨン イヨン 三日

22/48

EC 721 BU

• Proof

$$\frac{d(\frac{dw^{j}}{d\theta^{j}})}{dx} = \frac{d(\frac{dw^{j}}{d\theta^{j}})}{d\theta^{j}} = \frac{-w\gamma y(\beta-1)\beta(\frac{\beta(\theta^{j}}{w^{j}})\frac{\beta}{1-\beta}MN}{wx\beta(\frac{\beta(\theta^{j}}{w^{j}})M-\gamma y(\beta-1)N} > 0$$

G. Bahety and M.M.Ngoma

Policy simulations (cntd)

 Offering insurance only to cultivators ↑ wage volatility and ↓ welfare of uninsured laborers.

イロト 不得 トイヨト イヨト 二日

23/48

EC 721 BU

- Insured cultivators use more 1st stage inputs x.
- The effect of \uparrow in x on wages is higher in H than in L.
- It may also provide some benefits to the laborer:

Motivation	Literature review	Model	Research Design	Data	Conclusion
		000000000000000000000000000000000000000			

Policy simulations (cntd)

Proposition 4

Offering insurance to cultivators increases average wages.

• Proof:

•
$$\frac{d(\frac{dw^j}{x})}{dx} = \frac{(\frac{\beta(\theta^j)}{w^j})^{\frac{\beta}{1-\beta}}(\beta-1)(w^j)^2 M}{\gamma y^j(\beta-1)N - xw(\frac{\beta(\theta^j)}{w^j})^{\frac{\beta}{1-\beta}}M} > 0$$

- Insured cultivators use more x.
- The effect of an increase in x on the eq. wage is positive in any state.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

24/48

EC 721 BU

G. Bahety and M.M.Ngoma

Risk, Insurance and Wages in General Equilibrium by Mobarak and Rosenzweig (2014)

Motivation	Literature review	Model	Research Design	Data	Conclusion
		0000000000000000000			

Summing up

In summary:

- Insuring landless workers ↓ wage volatility (insured workers supply less labor than uninsured in L and supply more labor in H).
- Insuring cultivators ↑ labor demand volatility across rainfall states (insurance allows cultivators to ↑ output in H relative to L state.)

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

EC 721 BU

 Sensitivity of wages to rainfall increases when large number of cultivators are insured.

Risk, Insurance and Wages in General Equilibrium by Mobarak and Rosenzweig (2014)

Motivation	Literature review	Model	Research Design	Data	Conclusion
			000		

Outline

Motivation

2 Literature review

3 Mode

- 4 Research Design
- 5 Data

G. Bahety and M.M.Ngoma

Risk, Insurance and Wages in General Equilibrium by Mobarak and Rosenzweig (2014)

EC 721 BU

Motivation	Literature review	Model	Research Design	Data	Conclusion
			000		

Experimental Design

- Randomised Controlled Trial in 3 states of Andhra Pradesh (AP), Uttar Pradesh (UP) and Tamil Nadu (TN) of India
- Intervention: **Rainfall insurance** Delayed Monsoon Onset index-based insurance product
 - Historical rainfall data used for expected onset date of rainfall (Source: REDS)
 - *Monsoon onset* defined as a certain level of accumulation (between 30-40 mm)
 - *Delay* if target rainfall not reached by one of the three pre-selected trigger dates
 - *Trigger dates* varied with villages Rs. 300 (15/20 days late); Rs. 750 (20/30 days late) and Rs. 1200 (25/40 days late)

EC 721 BU

- All farmers in a village received the same payout, if the village qualified.

G. Bahety and M.M.Ngoma

 Motivation
 Literature review
 Model
 Research Design
 Data
 Results
 Conclusion

 00000
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 00

Experimental Design (contd.)

- *Treatment Group*: 2400 cultivator households and 2400 pure agricultural labor households
- Control Group: 1619 households
- Random offer of Insurance subsidy (ranging from USD 1.6 to 4 across villages)
 - Average insurance premium Rs. 145 (approx. USD 2.9)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

EC 721 BU

- 0, 10, 50 or 75 percent subsidy on insurance premium
- Marketing between Oct 2010 and Jan 2011
- Intention-to-Treat (ITT) effects estimated

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Conclusion
				000	

Outline

Motivation

2 Literature review

3 Model

4 Research Design

・ロ・・雪・・雪・・雪・ りゃぐ

G. Bahety and M.M.Ngoma

Risk, Insurance and Wages in General Equilibrium by Mobarak and Rosenzweig (2014)

29/48

Motivation	Literature review	Model	Research Design	Data	Results	Conclusion
00000	00	000000000000000000000000000000000000	000	0●0	000000000000000000000000000000000000	00

Sampling

- Used household listing data from NCAER's Rural Economic and Development Survey (REDS) from 2006
- Eliminate members of castes with fewer than 50 households in the listing
 - 93 out of 118 castes selected
- Random selection of 42 villages (out of 63)
- Random selection of households within these villages, stratified by caste and occupation (cultivators and landless laborers)
- Cluster standard errors by caste and village groups
- Follow up survey after *Kharif* harvest in April 2011 in TN, between Dec 2011 and Mar 2012 in UP and AP

EC 721 BU

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Conclusion
				000	

Data - Critique

- Elimination of smaller castes from the sample could lead to selection bias, larger caste groups may have larger informal social networks and hence, informal insurance

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

31/48

EC 721 BU

- Could lead to systematic elimination of certain vulnerable caste groups
- May have external validity issues

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Results	Conclusion
					••••••	

Outline

Motivation

2 Literature review

3 Model

- 4 Research Design
- 5 Data

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Results	Conclusion
					000000000000000	

Insurance Take-up

The height of the bars in the % of households who choose to purchase any insurance. The numbers on top of the bars indicate the average number of units of insurance purchased

• 42% take up rate of insurance among households - 25% cultivators and 31% laborers

EC 721 BU

- Take up rate increases with subsidy
- Critique: Low take up rates, focus on LATE rather than ITT?

G. Bahety and M.M.Ngoma

Rainfall Variation and Insurance Payout

34/48

EC 721 BU

G. Bahety and M.M.Ngoma

Rainfall Variation and Insurance Payout (contd.)

- Four villages in AP qualified for a payout: 1 village (Rs. 1200); 1 village (Rs. 750); 2 villages (Rs. 300)
- No perfect correlation between total rainfall and payouts, Occurence of payout is a random shock.

	Non-payout mean	Payout mean	T-stat of difference
Dev. of Kharif 2011 Rain per day from Historical Average	4.095	-2.066	-6.10
Rain per day during 2011 Kharif season	8.217	2.056	-7.28
Mean Historical Rainfall (1999-2006)	4.178	4.123	-0.11
Coefficient of Variation of Historical Rainfall	0.868	0.845	-0.16

Table 2: Comparison of Rainfall	Characteristics of Payout and	Non-Payout Villages
---------------------------------	-------------------------------	---------------------

EC 721 BU

35/48

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

G. Bahety and M.M.Ngoma

Sample characteristics for treatment households

Table 4: Sample Characteristics								
	Mean	SD	N					
Sample for Labor Demand Estimates	ator Households, Acre	age>.5						
Offered Insurance	0.620	0.485	1,585					
Acreage Cultivated	2.56	4.15	1,584					
Days of Harvest Labor	15.1	23.9	1,575					
Days of Planting Labor	22.5	32.7	1,575					
Sample for Labor Supply Estimates	Landless Agr	icultural Wage Worker	is Aged 25 -49					
Offered Insurance	0.575	0.494	3,678					
Age	35.5	6.99	3,678					
Male	0.479	0.500	3,678					
Deviation of Kharif 2011 Rain per Day from Historical Average	3.38	4.47	3,449					
Village where Payout Occurred	0.140	0.347	3,678					
Agricultural Labor Force Participation	0.345	0.475	3,676					
Days of Agricultural Work conditional on Labor Force Participation	58.9	44.2	1,268					
Migration during Kharif Season	0.023	0.151	4,272					
Sample for General Equilibrium Wage Estimates	Landless Ag	ricultural Wage Works	ers Aged 20+					
Offered Insurance	0.600	0.490	4,706					
Age	43.3	14.0	3,872					
Male	0.601	0.490	3,952					
Bus Stop in Village	0.403	0.491	4,706					
Paved Road to Village	0.896	0.305	4,706					
Bank in Village	0.365	0.481	4,706					
Rain per day during 2011 Kharif season	7.12	3.75	4,697					
Historical Mean Rainfall	4.15	1.28	4,392					
Village where Payout Occurred	0.150	0.358	4,706					
Proportion Cultivators Offered Insurance in 2011	0.202	0.135	4,706					
Proportion of Landless Labor Households Offered Insurance in 2011	0.252	0.160	4,706					
Proportion of Agri. Labor Households in Castes Eligible to Receive Insurance	0.874	0.088	4,706					
Proportion of Cultivator Households in Castes Eligible to Receive Insurance	0.849	0.182	4,706					
Proportion of Village Households that are Cultivators	0.287	0.159	4,706					
Proportion of Village Households that are Landless Agri. Laborers	0.382	0.176	4,706					
Daily agricultural wage (rupees) in Kharif season	120	64.1	3,076					

G. Bahety and M.M.Ngoma

Risk, Insurance and Wages in General Equilibrium by Mobarak and Rosenzweig (2014)

EC 721 BU

36/48

э

Motivation	Literature review	Model	Research Design	Data	Results	Conclusion
					00000000000000000	

Critique

Critique: The authors do not show a balance test.

EC 721 BU

G. Bahety and M.M.Ngoma

Regression Specification - Labor Demand

$$L_{jk}^{D} = \beta_1 I_{jk} + \beta_2 (I_{jk} * R_k) + \beta_3 OwnedArea + K_k + \epsilon_{jk}^1$$
(1)

38/48

EC 721 BU

As per theory:

 β_1 - linear ITT

 $\beta_2 > 0$, labor demand for insured cultivators more sensitive to rainfall than for uninsured (Proposition#3)

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Results	Conclusion
					000000000000000	

Results - Labor Demand

Table 5: Village Fixed Effects Estimates: Demand for Kharif Season Labor by

Cultivators by Stage of Production

(
	(1)	(2)	(3)	(4)				
VARIABLES	Days of Ha	irvest Labor	Days of Pla	nting Labor				
Offered Insurance in 2011	-0.161	-1.030	-1.669	-0.383				
	(-0.12)	(-0.45)	(-1.49)	(-0.26)				
Offered Insurance x Deviation of Kharif 2011	0.654	0.835	0.459	0.191				
Rain per Day from Historical Average	(2.39)	(1.96)	(1.41)	(0.48)				
Offered Insurance in a Village where Payout		2.324		-3.442				
Occurred		(0.70)		(-1.22)				
Acreage Cultivated	2.462	2.460	2.994	2.997				
	(2.43)	(2.43)	(2.56)	(2.56)				
Observations	1,468	1,468	1,468	1,468				

39/48

EC 721 BU

Robust t-statistics, based on standard errors clustered by village-caste, in parentheses

G. Bahety and M.M.Ngoma

MotivationLiterature reviewModelResearch DesignDataResultsConclusion0000000000000000000000000

Regression Specifications - Labor Supply

$$L_{ijk}^{S} = \alpha_1 I_{jk} + \alpha_2 (I_{jk} * R_k) + \alpha_3 (I_{jk} * r_k) + Z_{ijk} \pi + K_k + \epsilon_{jk}^2$$
(2)

As per theory: (Proposition #1)

 $\alpha_1 <$ 0, In low rainfall state, insured landless laborers will supply less labor than the uninsured

In high rainfall state, insured landless laborers supply more labor than the uninsured

 $\alpha_2 <$ 0, Labor supply less sensitive to realised rainfall for insured landless laborers

40/48

EC 721 BU

Risk, Insurance and Wages in General Equilibrium by Mobarak and Rosenzweig (2014)

Motivation	Literature review	Model	Research Design	Data	Results	Conclusion
					0000000000000000	

Results - Labor Supply

Table 6: Village Fixed Effects Estimates: Labor Supply and Migration during Kharif Season by Landless Agricultural Wage Workers Aged 25 - 49

, i i i i i i i i i i i i i i i i i i i	(1)	(2)	(3)	(4)	
	(1)	(2)	(3)	(+)	
	Agricultural Labor Force				
	Participation: Any Agricultural Work?		Number of Days of Agricultural Work		
Dependent Variable:					
	Payout Villages	Non-Payout Villages	Payout Villages	Non-Payout Villages	
Offered Insurance	-2.559	-0.162	-323.1	-21.10	
	(-3.14)	(-3.46)	(-1.83)	(-5.28)	
Offered Insurance x Deviation of Kharif	-1.197	0.0155	-161.9	3.298	
2011 Rain per Day from Historical	(-3.05)	(1.30)	(-1.83)	(2.01)	
Male	0.192	0.114	5.131	5.523	
	(5.47)	(4.06)	(1.09)	(1.98)	
Observations	515	2,932	287	1,191	
Predicted Effect of Insurance Offer at	-0.285	-0.0846	-15.44	-4.611	
Median Rainfall (t-stat)	(-3.051)	(-1.635)	(-1.391)	(-0.600)	

Robust t-statistics, based on standard errors clustered by village-caste, in parentheses. Age and age-squared also

EC 721 BU

G. Bahety and M.M.Ngoma

MotivationLiterature reviewModelResearch DesignDataResultsConclusion0000000000000000000000000

Regression Specifications - General Equilibrium Wage Equation

$$\log(W_{ik}) = \gamma_1 C I_k + \gamma_2 (C I_k * r_k) + \gamma_3 L I_k + \gamma_4 (L I_k * r_k) + \gamma_5 I P_k + Z_{ik} \alpha + V_k \delta + \epsilon_{ik}^3$$
(3)

As per theory:

 $\gamma_2 > 0$, \uparrow insurance for cultivators, \uparrow wage volatility across rainfall states $\gamma_4 < 0$, \uparrow insurance for wage workers, \downarrow wage volatility across rainfall states

 $\gamma_5>$ 0, Landless laborers supply less labor when insurance payouts occur, \uparrow wages

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

EC 721 BU

G. Bahety and M.M.Ngoma

Results - General equilibrium effects on wage volatility

	(1)	(2)
Proportion Cultivators Offered Insurance in 2011		-6.724
•		(-3.12)
Proportion Cultivators Offered Insurance * Rain per Day in 2011 Kharif		0.842
Season		(3.96)
Proportion of Landless Labor Households Offered Insurance in 2011		4.357
		(1.76)
Proportion of Landless Labor Households Offered Insurance * Rain per		-0.627
Day in 2011 Kharif Season		(-3.10)
Proportion of Households Offered Insurance in a Village where Payout		2.470
Occurred		(2.66)
Rain per day during 2011 Kharif season	0.145	0.804
	(1.10)	(7.03)
Rain per day during 2011 Kharif season, squared	-0.00305	-0.0133
	(-1.38)	(-5.56)
Historical Mean Rainfall	-0.125	0.0689
	(-1.98)	(1.18)
Bus Stop in Village	0.107	0.542
	(1.21)	(2.33)
Bus Stop in Village * Rain per Day in 2011	-0.0452	-0.149
	(-1.38)	(-3.76)
Paved Road to Village	0.751	0.909
•	(3.37)	(4.20)
Paved Road to Village * Rain Per Day in 2011	-0.0473	-0.222
	(-1.32)	(-7.58)
Bank in Village	0.431	0.167
•	(2.15)	(0.71)
Bank in Village * Rain Per Day in 2011	-0.0568	0.0230
	(-1.37)	(0.38)
Male	0.307	0.310
	(9.89)	(9.93)
Observations	2,693	2,693
A CONTRACT		

Table 7: General Equilibrium Effects of Insurance Provision and Rainfall on Log Wages (Landless Agricultural Wage Workers Ages 20+)

Robust-containtiest, based on timolated econs clustered by Willipe-costs, in parentmesses. All specifications include stars faste effects and control for education, age of septondent and a contrast term in age, and 11 vanishes characterizing iol Type, doph and charage demonstrations. All predictions also include for trainable contrasting for the proportion of willipe that are agardultural loberess or culturence, and their interactions with nain per day, and proportion willings laboress or culturences that are slightly to essentia summare markeding.

▲□▶▲□▶▲≣▶▲≣▶ ≣ 釣�♡ 43/48

EC 721 BU

G. Bahety and M.M.Ngoma

MotivationLiterature reviewModelResearch DesignDataResultsConclusion0000000000000000000000000

Policy Simulation # 1 - Effect of marketing insurance to cultivators in the village

Sensitivity of wages to rainfall \uparrow when cultivators are offered insurance

EC 721 BU

< ロ > < 同 > < 回 > < 回 > < 回 > <

---- Cultivators in Village Offered Insurance

G. Bahety and M.M.Ngoma

MotivationLiterature reviewModelResearch DesignDataResultsConclusion0000000000000000000000000

Policy Simulation # 2 - Effect of marketing insurance to landless laborers in the village

Figure 4: Effect of Marketing Rainfall Insurance to Agricultural Laborers on the Equilibrium Wage Rate

Sensitivity of wages to rainfall \downarrow when landless laborers are also offered insurance

EC 721 BU

G. Bahety and M.M.Ngoma

Policy Simulation # 3 - Combined effects

Figure 5: Effect of Marketing Rainfall Insurance to both Laborers and Cultivators on the Equilibrium Wage Rate

**** Predicted Wage with Insurance for both Cultivators and Agri. Laborers in Payout Village

Sensitivity of wages to rainfall *vanishes* when both cultivators and landless laborers are offered insurance

EC 721 BU

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Conclusion
					0

Outline

Motivation

2 Literature review

3 Model

- 4 Research Design
- 5 Data

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ � � � � 47/48

G. Bahety and M.M.Ngoma

Motivation	Literature review	Model	Research Design	Data	Results	Conclusion
00000	00	000000000000000000000000000000000000	000	000	000000000000000000000000000000000000	○●

- Net spillover effects of insurance marketing to cultivators and landless laborers on wage volatiility non-existent
- Wage volatility increases with marketing of insurance to only cultivators \implies reducing welfare for landless laborers who also cannot afford insurance prices.
- Wage volatility decreases with marketing of insurance to landless laborers as well ⇒ offering insurance not just to farmers but also to wage laborers
- Importance of understanding the aggregate effects of interventions (even in experimental settings) using GE framework

EC 721 BU